Name: \qquad
Science Teacher: \qquad Period: \qquad

Body Systems

Workbook

Hopewell Middle School $7^{\text {th }}$ Grade Science
Unit 7: Human Body Systems
TEKS Analysis
How do physical and chemical changes in matter in the digestive system compare? How does the digestive system break down large molecules into smaller molecules? body systems?
What are the major functions of the human
0 body.
।

।

 How do the functions of a cell compare to the functions of an organism?
Daily Work

	A B	C	D	E
1	The main function of the respiratory system is to - A. rapidly communicate specific information using electrical impulses. B. exchange gases, mostly carbon dioxide and oxygen, between the body and the atmosphere. C. send signals in the form of hormones to the body to control growth, reproduction, and metabolism. D. filter body fluids to remove waste products from the bloodstream.	Name the major organs of the excretory system: \qquad \qquad \qquad \qquad	Maintaining internal stability (sweating, chill bumps, stomach growls, movement of nutrients in and waste out through cell membranes)	System that fights disease and controls the immune response
2	What is the function of arteries? What is the function of veins? \square 	Name the major organ \qquad Name the major organ	f the circulatory system: of the respiratory system:	Which system is responsible for removing waste from your body, filtering waste from blood and controls water balance?
3	The main function of the circulatory system is to - A. convert food into simpler substances for the body to absorb as nutrients. B. exchange gases, mostly carbon dioxide and oxygen, between the body and the atmosphere. C. send signals in the form of hormones to the body to control growth, reproduction, and metabolism. D. transport blood through the body to supply cells with oxygen and nutrients.	What body system is considered the "highway" system in the body because it transports nutrients and oxygen to cells? \qquad \qquad	What is the main function of the endocrine system? \qquad \qquad \qquad \qquad \qquad \qquad	Different parts of the circulatory system are adapted for different functions. A blood vessel that is very narrow and has thin walls is most likely specialized for - A. storing blood until it is needed B. passing materials in blood to cells C. carrying blood over long distances D. withstanding high blood pressures

4	List the system each organ belongs to: 1. Lung-- 2. Heart-- 3. Skull-- 4. Blood-- 5. Brain-- 6. Kidney-- 7. Bicep-- \qquad \qquad \qquad \qquad \qquad \qquad \qquad	Models A and B represent the organ system in the body that is responsible for - A. movement of bones B. breaking down food into useable parts C. transporting materials throughout the body D. taking in oxygen and releasing carbon dioxide
5	Changes in Pulse Rate during Jogging The body systems most involved in the jogging activity data are the - A. digestive, circulatory, and nervous systems B. skeletal, muscular, and respiratory systems C. muscular, skeletal, and circulatory systems D. respiratory, digestive, and nervous systems	A student conducts an experimental investigation to determine if her lung capacity changes as a result of exercising. First, the student inhales normally, then exhales normally into a balloon and ties the end of the balloon. Next, the student uses a measuring tape to measure the diameter of the balloon and records the measurement in a data table. These procedures are repeated three times. The student exercises every day but only collects data every 10 days. The data table summarizes the average diameter of the balloon during the investigation. Which body system is the student testing? A. Circulatory B. Digestive C. Muscular D. Respiratory

RRISD.-
Study online at
absorption

Digested products moving into blood stream
amino acids

Amino Acids= Building Blocks of Protein

Building blocks of protein

bile
carbohydrates

Broken down to glucose to provide energy.

cardiac
 muscle

cartilage

A connective tissue that is more flexible than bone and that protects the ends of bones and keeps them from rubbing together.

chemical

digestion

the digestion process in which enzymes are used to break foods into their smaller chemical buiding blocks

Consists of the heart, blood vessels, and the blood. Fundamental purpose is to transport substances from place to place in the body

[^0]digestion

Breaking down food
digestive system

enzyme

excretory
system

Breaks down food into smaller molecules. Absorbs these nutrients into the body.

A type of protein that speeds up a chemical reaction in a living thing

Excretory System

- Remosal of wase from the bedy
fats

```
glucose
```


the system that removes waste from your body and controls water balance

Also called lipids, provides energy and help your bod absorb vitamins.

A kind of sugar the cell uses.

Maintaining internal stability (sweating, chill bumps, stomach growls, movement of nutrients in and waste c through cell membrane)

A message carried by neurons to one part of the bod from another.
integumentary system
s involuntary muscle
joint
ligament

(a) Straighticg

(b) 5 decgrect bast

Connective tissue that connects bone to bone
mechanical digestion

Takes place when food is chewed, mixed, and churned.

Molecule

Chemicals that result from atoms linking together.

Consists of skeletal muscles, tendons that connect muscles to bones, and ligaments that attach bones together to form joint

A bundle of nerve fibers.
nervous
system

Detects information from the environment and controls body functions
pancreatic juices

peristalsis

28 respiration

Involuntary waves of muscle contraction that keep food moving along in one direction through the digestive system.

Act of breathing; the exchange of carbon dioxide and oxygen in the lungs and with in each cell

system responsible for taking in oxygen and releasing carbon dioxide using the lungs
30 shivering
skeletal muscle

Rapid contraction of muscles, requiring energy and therefore creating heat, to warm the body.

A muscle that is attached to the bones of the skeleton and provides the force that moves the bones; voluntary
skeletal system

Skeletal System- provide support

Protects and supports organs and provides a framework the muscles use to support movement. Made up of bones and joints.
smooth muscle

Involuntary muscle found inside many internal organs of the body
carbohydrates found both in food and in the body

35 sweating

Getting rid of excess heat through pores in the skin to stay cool.

tendon

37 voluntary muscles

It all Starts in your Mouth

Digestion actually begins in your mouth. Your teeth and tongue tear food into smaller pieces and enzymes in your saliva can digest some types of food. In this station you are going to investigate what happens to starch in the form of a cracker when placed in your mouth.

Prediction:

What do you think will happen to the cracker when you place it in your mouth?

Procedure:

Thoroughly read all of the steps before you begin the activity!!

1. Carefully break the cracker in half.
2. Put half of the cracker in your mouth. Do not chew or swallow!
3. Wait several minutes and allow the cracker to become soggy from the saliva secreted in your mouth.
4. Did you notice any change in the taste of the cracker?
5. Record your findings in your student notebook.
6. Chew the soggy cracker and swallow. It will reach the stomach within 4-8 seconds.

Reflection Questions:

1. What did you observe happening to the cracker as it interacted with the saliva in your mouth?
2. Was the digestion of the cracker in your mouth a chemical change, physical change or both?
3. What evidence do you have to support your claim of a chemical change, physical change or both?

Did you detect a mildly sweat taste after the cracker got soggy? If not place the other half of the cracker in your mouth and try again; wait a little longer this time.

An enzyme in your saliva is working to chemically digest the cracker. The large starch molecules are digested into more simple sugar molecules. This sugar is glucose. It is not as sweet as sucrose which is table sugar. The final digestion of starch in the cracker will occur later in the digestive process.
4. How do chemical and physical digestion work together to digest the cracker in your mouth?
5. What is happening to the starch molecules when they come in contact with your saliva?

Digestive System
 Diagram

Digestive System Notes

Name: \qquad

FUNCTIONS OF THE DIGESTIVE SYSTEM

1. \qquad = food enters the mouth
2. \qquad $=$ process that \qquad food \qquad into small molecules
a) \qquad digestion $=$ food is chewed and churned
b) \qquad digestion = breaks down large food molecules into smaller molecules to be absorbed by cells
3. \qquad $=$ small molecules of food are taken into the \qquad
4. \qquad = \qquad made of unabsorbed food molecules pass out of the body

Which is NOT a function of the digestive system?

a) breaking down food into molecules the body can use
b) absorbing food molecules into the blood to deliver to the body
c) changing waste into molecules the body can use
d) eliminating undigested waste from the body

ORGANS OF THE DIGESTIVE TRACT

1. \qquad $=$ digestion starts here
a. Tongue \& teeth \qquad break food up
b. Saliva \qquad digests food

- Saliva = mostly made of \qquad , also contains mucus \& ptyalin (an enzyme)

c. When swallowing, \qquad (a small flap of tissue) automatically closes over the \qquad (windpipe)

2.

a. \qquad muscles force food into the mucus-lined esophagus
b. Rhythmic muscular contractions (\qquad) push food \qquad
3. \qquad
a. Food undergoes \qquad digestion when stomach muscles

Which is NOT an example of mechanical digestion?
a) teeth chewing food
c) smooth muscles in stomach churning food
b) tongue breaking up food
d) Pepsin \& HCl breaking down proteins

What are the muscle contractions that push food through the digestive system called?
a) elimination
b) peristalsis
c) epiglottis
d) pepsin

What is this structure called?
a) mouth
b) epiglottis
c) esophagus
d) stomach

\qquad (6 meters long)
a. \qquad digestion happens here
b. Intestinal juice (full of \qquad) breaks down food
c. Digestive Helpers

- \qquad $=$ \qquad is produced here (Bile \qquad like dish detergent breaks up grease)
\bullet \qquad $=$ bile is \qquad here until released into the small intestine
- \qquad $=$ produces pancreatic juices that are released into the small intestine to break down \qquad , \qquad , \& \qquad
d. Digested food is \qquad through the \qquad into a network of blood vessels that carry the nutrients to all parts of the \qquad
e. By the time food leaves the small intestine, it is \qquad of all nutrients except \qquad
Where does most digestion take place?
a) mouth
b) stomach
c) small intestine
d) liver

Which is true about bile?
a) Bile breaks down proteins.
c) Bile is stored in the pancreas.
b) Bile is produced in the liver.
d) Bile is released into the stomach.

What is this structure called?
a) liver
b) stomach
c) gall bladder
d) pancreas
5. \qquad (1.5 meters long)
a. Undigested food spends \qquad hours here \& most of the water is \qquad
b. Helpful \qquad living in large intestine make vitamins \qquad \& \qquad
c. Materials not absorbed form into \qquad (dead \qquad , some \qquad \& \qquad , undigested food, dried out parts of digestive juices \& old intestinal \qquad _)
d. Solid waste passes into the \qquad and is stored until it is eliminated from the body through the \qquad

Which process occurs in the large intestine?
a) Digested food is absorbed.
c) Water is added to undigested food.
b) Undigested food is absorbed.
d) Water is absorbed from undigested food.

Which structure is the large intestine?
a) A
b) B
c) C
d) D

What do the bacteria in the large intestine do?
a) make you sick
b) make bile
c) make vitamins
d) make food

Be on the Lookout

Term	Digestive System Connection How does it relate to the digestive system?	Location Where does the term occur in the digestive system?	Memory Clue How can you remember this word?
peristalsis			
absorption			
villi			
enzymes			

Energy Transformation in your Digestive System

Types of Energy

Kinetic-energy of motion
Mechanical-energy of matter because of its motion or position
Radiant-energy of light (electromagnetic waves)
Thermal-energy of temperature (particles in hot water move faster than particles in cold water)
Electrical-energy produced by electrical charges (movement of electrons)
Potential-stored energy
Gravitational Potential Energy-energy based on an object's position above the Earth
Chemical-energy stored in matter because of its chemical makeup (food, fossil fuels)

Energy Transformations

-the energy in matter can change, or transform,
from one form to another
-energy cannot be created or destroyed, it just
changes forms
-when you "use" energy, you are really just
transforming it to another form
-in a flashlight, the chemical energy of the battery is converted into electrical energy which is then converted into radiant (light) and thermal energy -radiant energy from the sun is converted into chemical energy stored in plants during photosynthesis
-often in energy transformations, some energy is "lost" to thermal energy (this means that heat is given off during an energy transformation even though heat is not needed)

Energy Transformation inside of you -the food you eat is chemical energy
-your digestive system breaks the food down into molecules that are the nutrients and energy you need for survival -the chemical energy in your food is converted to different chemical energy and thermal energy
-the thermal energy is given off as heat
-the chemical energy (molecules such as carbohydrates) travels around your body in your circulatory system until it is used by various cells
-the cells then use that energy to allow body movement -this is when the chemical energy is transformed into mechanical energy
-skeletal muscle cells contract and relax to allow movement -blood cells travel through the blood vessels to provide more energy and nutrients to other cells
-smooth muscle cells in the digestive system move food along to continue the process of energy conversion

The human body is able to convert chemical energy stored in food into mechanical energy so a person can move.

The Excretory System - The Facts

1. The job of the excretory system is to take waste out of the body.
2. The kidneys are the most important part of the excretory system.
3. Other organs that get rid of wastes are the liver, skin, lungs, and large intestine.

KIDNEYS

1. The kidneys are two reddish-brown organs about four inches long.
2. The kidneys are in the lower back on each side of the backbone.
3. The kidneys are made of millions of tiny tubes and cells.
4. These tubes pull liquid waste from the blood.
5. The liquid waste is called urine.
6. Urine is stored in the bladder until it is passed out of the body.

LUNGS, LIVER, and INTESTINE

1. Lungs remove carbon dioxide when you breathe out.
2. The liver takes out waste that is floating in the blood.
3. The muscles of the large intestine push waste food out of the body.

SKIN

1. The skin is the largest excretory organ.
2. The skin gives off waste by sweating.
3. Sweat is made of water and salt.
4. Sweat passes through tiny holes in the skin.
5. Tiny holes in the skin are called pores.

Excretory System

Functions of Excretory System

1. Rids blood of \qquad (__)
2. Controls blood volume by removing extra \qquad produced by \qquad
3. Balances \qquad and \qquad so cells can function properly

Organs of the Excretory System

1. \qquad = carries
blood \qquad the kidneys
2. \qquad = carries
blood \qquad the kidneys
3. \qquad = filter \qquad that
has collected \qquad from cells
a. \qquad = filters inside the kidneys
b. Produce \qquad (sterile was
fluid, \qquad water)
4. \qquad = tubes that lead from each \qquad to \qquad
5. \qquad = muscular organ
that holds \qquad
6. \qquad = tube that carries urine from the \qquad out of the \qquad

The Excretory System

The job of the excretory system is to take waste out of the body. Another name for this system could be the body waste system. The kidneys form the mostimportant part of the excretory system. Other organs that remove wastes are the lungs, the skin, the liver, and the large intestine.

What are the main organs of the excretory system like? The kidneys are two, reddish-brown organs about four inches long. They are in the lower back. One is on each side of the backbone. The kidneys are made of millions of tiny tubes and cells. These tubes pull liquid waste from the blood. This liquid is called urine. Urine is stored in the bladder until it is passed out of the body.

Other organs help the body get rid of wastes. As you breathe, the lungs remove carbon dioxide from the blood. The liver takes out tiny bits of waste floating in the blood. The large intestine, a part of the digestive system, takes in water and waste

from food that is not digested. The water is removed and the waste is passed out of the body.

The skin gives off waste by sweating. When you sweat, water and some salts pass through tiny openings in the skin. These openings are called pores.

1. What is the job of the excretory system? \qquad
\qquad
2. Name five organs of the excretory system. \qquad
\qquad
\qquad
\qquad
3. Tell how the kidneys help get rid of waste. \qquad
\qquad
4. How does the skin give off waste? \qquad
\qquad

Heart Beat Health Beat

TEKS: 7.12B - Identify the main functions of the systems of the human organism.
Objective: To observe how your heart responds to the body's changing needs for oxygen.
Materials: Heart Rate monitor
Timer

Procedure:

1. Predict how your pulse rate will change as you go from resting to being active, then back to resting again.
2. Locate your pulse by placing the index and middle finger of one hand on your other wrist at the base of your thumb. Move the two fingers slightly until you feel your pulse.
3. Begin by determining your resting pulse rate. Count the number of beats in your pulse for exactly 1 minute while your partner times you. Record the number in the data table on the next page.
4. Walk in place for 1 minute while your partner times you. Stop and immediately take your pulse for 1 minute. Record the number in your data table.
5. Run in place for 1 minute. Take your pulse again, and record the result.
6. Sit down right away, and have your partner time you as you rest for 1 minute. Then take your pulse rate again.
7. Have your partner time you as you rest for 3 more minutes. Then take your pulse rate again and record it.

Name: \qquad Lab Partner: \qquad
Heart Beat, Health Beat
Data Table

Activity	Pulse Rate
1. Resting	
2. Walking	
3. Running	
4. $(1 \mathrm{~min})$ Resting after Exercise	
5. $(3+\mathrm{min})$ Resting after Exercise	

Analyze and Conclude

1. Use the data you obtained to create a bar graph of your pulse rate under the different conditions you tested.
2. What conclusion can you draw about the relationship between physical activity and a person's pulse rate?
3. What happens to the pulse rate when the physical activity has stopped?
4. What can you infer about the heartbeat when the pulse rate increases?
5. Do you think the pulse measurements you made are completely accurate? Why or why not?
6. How could you improve the accuracy of your measurements?
7. Why does your pulse rate change when you exercise? Explain how this is connected to homeostasis.

Make a bar graph to compare the activity and the average pulse rate for each activity.
Title \qquad

Label the Independent Variable (Don't forget units)

Respiratory System Notes

FUNCTIONS OF THE RESPIRATORY SYSTEM

1. supply \qquad to the blood
2. remove \qquad from the blood

What is the function of the respiratory system?
a) to provide oxygen \& carbon dioxide to the body cells
b) to provide carbon dioxide to body cells \& remove oxygen
c) to provide oxygen to body cells \& remove carbon dioxide
d) to remove oxygen \& carbon dioxide from the body cells

ORGANS OF THE RESPIRATORY SYSTEM

The Throat and It's Neighboring Structures

1. Nose \& Mouth (air enters through the nostrils \& mouth)
a. \qquad = air is cleaned, warmed, and moistened
2. Throat
a. \qquad = passageway for both \qquad and \qquad
b. \qquad = flap that closes over the \qquad when
\qquad to keep food \& water out
c. \qquad $=$ \qquad only; \qquad are attached here
d. \qquad (windpipe) $=c$-shaped rings of \qquad keep it \qquad all the time

Which of these does the nasal cavity NOT do to inhaled air?
a) clean
b) warm
c) moisten
d) condense

What is the flap called that prevents food from entering the larynx?
a) pharynx
b) epiglottis
c) $\operatorname{lar} y n x$
d) trachea

What is the first structure that only air can pass through (not food)?
a) mouth
b) pharynx
c) $\operatorname{lar} y n x$
d) trachea
3. Lungs (where oxygen \& carbon dioxide are \qquad)
a. \qquad $=2$ small branches at end of \qquad ; carry
\qquad into lungs
b. \qquad = smaller branches off of \qquad
c. \qquad $=$ tiny, grape-like sacs at the \qquad of bronchioles; surrounded by \qquad
4. Diaphragm (\qquad below the lungs that helps move \qquad in and out of the boay)

What is this structure called?
a) bronchi
b) bronchiole
c) alveoli
d) diaphragm

What causes you to exhale?
a) Your lungs contract to squeeze air out.
b) Your diaphragm moves up, pushing air out of the lungs.
c) Your ribs squeeze the air out of your lungs.

d) Your diaphragm moves down, letting air escape from your lungs.

GAS EXCHANGE IN THE LUNGS

- takes place between \qquad and \qquad

Where does the exchange of oxygen and carbon dioxide occur?
a) the heart
b) the alveoli
c) the pharynx
d) the body cells

What carries the blood back to the heart after it picks up oxygen from the alveoli?
a) lungs
b) aorta
c) pulmonary artery
d) pulmonary vein

Cardiovascular System Notes

- cardio = \qquad
- made up of \qquad , vascular $=$ \qquad
- \qquad system—blood stays \qquad the vessels
- blood only flows \qquad -way

What is another name for the cardiovascular system?
a) respiratory system
b) circulatory system
c) immune system
d) skeletal system C Lrom heart
Which one of these vessels carries blood away from the heart?
a) pulmonary vein
b) renal vein
c) renal artery
d) superior vena cava

FUNCTIONS OF THE BLOOD

1. carries \qquad from \qquad to all body \qquad \& removes \qquad from the \qquad
2. carries \qquad products of cell activity to \qquad to be removed from the body
3. transports \qquad from digestive system to body
4. materials in blood help fight \qquad and
\qquad wounds (\qquad blood cells \& _)

Which 2 substances does the blood transport away from body cells?
a) oxygen \& carbon dioxide
c) nutrients \& waste
b) carbon dioxide \& waste
d) oxygen \& nutrients

What parts of the blood help fight off diease and heal injuries?
a) white blood cells \& platelets
c) white blood cells \& red blood cells
b) red blood cells \& platelets
d) white blood cells \& plasma

Which is NOT a function of the cardiovascular system?
a) carry nutrients \& oxygen to body cells
b) carry carbon dioxide \& waste away from body cells
c) attack disease-causing bacteria
d) produce chemicals that control body processes

What force causes blood to keep flowing through the body?
a) the opening \& closing of the valves in the heart
b) gravity pushing blood through the veins
c) cardiac muscle in the heart contracting and relaxing
d) cardiac muscle in the blood vessels contracting and relaxing

What is this chamber called?
a) right atrium
b) left atrium
c) right ventricle
d) left ventricle

The pulmonary artery carries blood from the \qquad to the \qquad .
a) heart, body
b) heart, lungs
c) lungs, heart
d) lungs, body

When blood enters the left atrium from the lungs, what does it contain?
a) no oxygen or carbon dioxide
c) mostly carbon dioxide
b) equal amounts of oxygen and carbon dioxide
d) mostly oxygen

What is this structure called?
a) superior vena cava
b) aorta
c) left atrium
d) valve

SUMMARY

The Human Heart
Label using the Word Bank. Draw arrows to show the direction of the flow of blood.

right ventricle aorta
right atrium vena cava left ventricle left atrium

Parts of the Heart

aorta - the biggest and longest artery (a blood vessel carrying blood away from the heart) in the body. It carries oxygen-rich blood from the left ventricle of the heart to the body.
inferior vena cava - a large vein (a blood vessel carrying blood to the heart) that carries oxygen-poor blood to the right atrium from the lower half of the body.
left atrium - the left upper chamber of the heart. It receives oxygen-rich blood from the lungs via the pulmonary vein.
left ventricle - the left lower chamber of the heart. It pumps the blood through the aortic valve into the aorta.
mitral valve - the valve between the left atrium and the left ventricle. It prevents the back-flow of blood from the ventricle to the atrium.
pulmonary artery - the blood vessel that carries oxygen-poor blood from the right ventricle of the heart to the lungs.
pulmonary valve - the flaps between the right ventricle and the pulmonary artery. When the ventricle contracts, the valve opens, causing blood to rush into the pulmonary artery. When the ventricle relaxes, the valves close, preventing the back-flow of blood from the pulmonary artery to the right atrium.
pulmonary vein - the blood vessel that carries oxygen-rich blood from the lungs to the left atrium of the heart.
right atrium - the right upper chamber of the heart. It receives oxygen-poor blood from the body through the inferior vena cava and the superior vena cava.
right ventricle - the right lower chamber of the heart. It pumps the blood into the pulmonary artery.
septum - the muscular wall that separates the left and right sides of the heart.
superior vena cava - a large vein that carries oxygen-poor blood to the right atrium from the upper parts of the body.
tricuspid valve - the flaps between the right atrium and the right ventricle. It is composed of three leaf-like parts and prevents the back-flow of blood from the ventricle to the atrium.
aortic valve- The flap of tissue between the left ventricle and the aorta. It prevents blood from flowing backward into the left ventricle.

Nervous System Notes

FUNCTIONS OF THE NERVOUS SYSTEM

1. the center of all thought, \qquad and \qquad
2. regulates and maintains \qquad (a state of \qquad)

- examples: body \qquad , \qquad , respiration, digestion

3. keeps us in touch with our \qquad and \qquad environment

What is this part of the brain called?
a) cerebrum
b) cerebellum
c) brain stem
d) spinal cord

What is the function of the brain stem?

a) controls homeostasis \& voluntary muscles
c) controls balance \& coordinates muscles
b) controls sense \& voluntary muscles
d) controls homeostasis \& involuntary muscles

When you feel hungry, what function is your nervous system trying to carry out?
a) maintaining homeostasis
c) sensing your environment
b) moving your body
d) keeping your physical balance

CENTRAL NERVOUS SYSTEM

1. made up of \qquad and \qquad
2. three main parts of brain:
a)
\qquad - interprets input from \qquad and controls \qquad muscles
b) \qquad - coordinates actions of \qquad and helps keep your \qquad
c)
\qquad - controls \qquad and coordinates

\qquad muscles

NERVE CELLS

- Nerve cells are called
- \qquad - a \qquad carried by a neuron
- \qquad - the small space that an impulse
 jumps \qquad

TYPES OF NEURONS

1. \qquad neurons = can sense pressure, temperature, pain, and 5 senses

- in
\qquad , \qquad , \qquad and sense organs (nose, tongue, eyes, ears)

2. \qquad neurons $=$ stimulate \qquad throughout the body

- includes muscles of the \qquad , \qquad , intestines, and bladder

3. \qquad $=$ \qquad other neurons

\qquad neurons in the \qquad nervous system (brain, spinal cord) are interneurons - an \qquad response to a \qquad (change in environment) that allows the body to respond quickly without thinking about it

What is an impulse?
a) a nerve cell
c) the space between two neurons
b) a message carried by neurons
d) a reflex

What is this structure called?
a) axon
b) synaptic terminal
c) nucleus
d) dendrite

What does a motor neuron stimulate?
a) brain cells
b) sensory organs
c) muscle cells
do sensory neurons

Which is not true about a reflex?
a) It is a quick response.
c) It does not require conscious thought.
b) It is voluntary.
d) It is a response to an external stimulus.

Immune System Notes

FUNCTION OF THE IMMUNE SYSTEM

1. body's \qquad against disease-causing organisms (\qquad

Which of the following is a disease that is caused by a pathogen?

a) diabetes
b) cancer
c) flu
d) allergies

THREE LINES OF DEFENSE

1. \qquad $=$ keep pathogens from entering the body
\qquad , hairs \& mucus in \qquad , sneezing \& \qquad , saliva, \qquad acids
2. \qquad $=$ when body cells are damaged

- \qquad = fluid \& \qquad blood cells leak from blood vessels into surrounding tissue
a) white blood cells (\qquad) = attack invaders \& eat them
b) \qquad $=$ substances produced by body cells when attacked by viruses; interfere with the production of \qquad

How do your body's barriers help keep you healthy?
a) keep pathogens inside your body
c) interfere with the production of pathogens
b) keep pathogens out of your body
d) break down pathogens

What's the major difference between general response \& immune response?
a) General response can tell the difference between different pathogens.
b) immune response can tell the difference between different pathogens.
c) General response takes longer to respond to an invader.
d) Immune response involves white blood cells.

Which best describes the relationship between macrophages \& helper T-cells?
a) Macrophages \& helper T-cells both do the same job.
b) Macrophages signal helper T-cells, which kill the invader.
c) Macrophages signal helper T-cells, which signal other immune cells to fight the invader.
d) Helper t-cells attack macrophages.

ANTIBODIES \& ANTIGENS

- \qquad $=$ \qquad produced by the immune system which \qquad certain kinds of pathogens
- \qquad = the part of the pathogen that the antibody
\qquad and \qquad

PREVENTING DISEASE

- no cure for \qquad disease, only \qquad
- \qquad = made from damaged virus particles that can't cause disease anymore
a) $1^{\text {st }}$ Vaccine $=$ Dr. Edward \qquad (1798) developed a vaccine for \qquad from the cowpox virus

Vaccine Immunity

Which is NOT true about the relationship between antibodies \& antigens?
a) Every pathogen has a unique antigen on its surface.
b) The first time an antigen enters your body, you already have an antibody for it.
c) Each antibody can only bind to a specific antigen.
d) The second time an antigen enters your body, the antibodies will recognize \& kill it.

If you had chicken pox once, what would happen if you were exposed to the virus again?
a) Your body wouldn't be able to fight the virus \& you would get sick.
b) Your body would have antibodies from the first time you had chicken pox \& you wouldn't get sick.
c) Your body would make different antibodies than the first time \& you wouldn't get sick.
d) The virus would recognize the antibodies \& leave.

Which type of disease can be prevented by a vaccine?
a) virus
b) bacteria
c) fungus
d) parasites

Why doesn't the flu virus used in the flu vaccine make you sick?
a) The virus does make you sick
c) The virus can't reproduce.
b) There is no virus in the vaccine.
d) The part of the virus that makes you sick was removed.

Integumentary System Notes

FUNCTIONS OF THE INTEGUMENTARY SYSTEM

1. forms a \qquad
\qquad over the body
2. maintains \qquad -regulates \qquad
3. \qquad -sodium chloride (salt), water, urea
4. \qquad organ-nerve endings are sensitive to \qquad , \qquad \& \qquad
5. produces \qquad in the epidermis using \qquad -

Which is NOT a function of the integumentary system?
a) to prevent substances from entering the body
c) to remove wastes from the body
b) to help keep body temperature stable
d) to absorb oxygen into the body

LAYERS OF SKIN

1. \qquad $=$ surface layer
a) cells on top are \qquad
b) \qquad are constantly produced at the bottom
c) cells produce \qquad (pigment that gives you skin color)
2. \qquad $=$ layer under epidermis
a) \qquad than epidermis
b) contains blood vessels, nerves, oil and sweat glands
c) \qquad stored under the dermis

Which part of the skin makes new skin cells?

a) epidermis
b) dermis
c) fat cells
d) sweat glands
b)

Integumentary and Nervous System Investigation Answer Sheet

Part 1: The Skin You're In

1. a. How does the skin of your palm differ from that on the back of your hand?
b. Describe any regular patterns you observe.
2. In your observations describe the appearance of these features.
\qquad
\qquad
3. Use the hand magnifier or stereoscope to compare the type and distribution of hairs on the front and back of your forearm.
\qquad
\qquad
4. Describe the differences you observed in the type and distribution of hair on the front and back of your forearm.
\qquad
\qquad
\qquad
5. Examine the point at which the hair comes out of the skin using a magnifier or stereoscope. Describe the area immediately around the hair and the angle at which the hair leaves the skin.
\qquad
\qquad
\qquad
6. Pull on the skin of the back of your hand and the palm. Record your observations.
\qquad
\qquad
\qquad
7. Use the magnifier and stereoscope to examine your fingernails. Draw what you see.
8. What are the functions of the parts of the integumentary system you just observed?
\qquad
\qquad
\qquad
\qquad

Part 2: Plotting the Distribution of Sweat Glands

1. Record the number of blue-black dots on each square. The appearance of a blue-black dot indicates the appearance of an active sweat gland. (The iodine in the pore dissolves in the sweat and reacts with the starch in the paper to produce the color.)
2. Which skin area tested has more sweat glands?
\qquad
3. What areas of the body do you think have the most sweat glands?
\qquad
4. Why do you think these areas have more sweat glands?
\qquad
\qquad
5. How does the nervous and integumentary system work together to respond to the internal stimuli of temperature?
\qquad
\qquad
\qquad
\qquad
\qquad

Part 3: Microscopic Examination of Hair

1. Illustrate your observation when viewing the arm hair under medium or high power. Be sure to document the total magnification of the image you drew.
2. Illustrate your observation when viewing the eyebrow hair under medium or high power. Be sure to document the total magnification of the image you drew.
3. Illustrate your observation when viewing the hair under medium or high power. Be sure to document the total magnification of the image you drew.
4. How were the three types of hair similar?
\qquad
\qquad
\qquad
5. How were the three types of hair different?
\qquad
\qquad
\qquad
\square
6. Explain how your nervous system interacts
 external stimuli?

Part 4: Testing Tactile Localization

1.

Tactile Localization

Body Area Tested	Error of Localization, mm (distance between marks)			
	Trial 1	Trial 2	Trial 3	Average
Palm of hand				
Fingertip				
Forearm				
Back of hand				

1. Record the data in the table.
2. Does the ability to locate the stimulus improve the second time? The third time?
3. Why do you think this happened?
\qquad
\qquad
4. Which area has the smallest error of localization and is therefore the most sensitive to touch? \qquad
5. Why do you think this is the most sensitive area to touch?
\qquad
\qquad
6. How does the nervous system use the ability to sense touch to regulate our bodies?
\qquad
\qquad
\qquad
7. Describe ways our body might respond to touch stimuli from receptors in our skin? Give specific examples.

Part 5: Demonstrating Adaptation of Touch Receptors

1. Record your data in the table below

Adaptation of Touch Receptors

Location	Number of			
		\quad	Length of Time of Sensation (seconds)	
:---:	:---:			
Location 1 on forearm	1			
Subject A	Subject B			
Location 2 on forearm	1			

2. Are the same receptors being stimulated when the four coins, rather than one coin, are used? Explain your reasoning.
\qquad
\qquad
\qquad
3. Why do you think we stop feeling the sensation over time? How is this helpful? \qquad
\qquad
\qquad
4. What was the stimulus when more coins were added to the one you did not feel? \qquad
\qquad
\qquad
5. What are some examples of responses your body's nervous system would need to make in response to a stimulus of changes in the amount of pressure on the skin? \qquad
\qquad
\qquad
\qquad

Part 6: Two-Point Sensibility

1. What are the independent and dependent variables of this investigation?
2. Record the data in the table below

Location	Distance between the ends of the paper clip			
	.5 cm	1 cm	2 cm	3 cm
Inner surface of forearm				
Neck				
Fingertip				

3. Which body area tested has the greatest density of touch receptors?
4. How do you know?
\qquad
\qquad
\qquad
5. In which layer of the skin are these pressure receptors found?
\qquad
6. Why do some areas of your skin need more touch receptors than others?
\qquad
\qquad
\qquad
7. How does the nervous system and the integumentary system work together to give you fine motor control? (read the introduction for more information)
\qquad
\qquad
\qquad
\qquad

INTRODUCTION

Much of the work of the body depends on the contraction of skeletal muscles. In this experiment you will first observe the characteristics of muscle contraction and then will investigate the effects of two factors-temperature and fatigue-on the action of your muscles.

MATERIALS

bowl of water
narrow strip of paper which will fit around upper arm
ice rubber ball or clothespin
stopwatch

PROCEDURE \& DATA ANALYSIS

The following exercises will help you understand what happens to your muscles when they contract.

Muscle Action

1. Place your fingers along the angle of your jaw just in front of your ear. Grit your teeth and observe what happens to the hardness of the muscles in your cheek.

What change do you observe in the muscle while it is working (contracting)? \qquad
2. With the thumb and little finger of one hand, span the opposite arm's biceps (front muscle of the upper arm) from the elbow to as close to the shoulder as possible. Bend the arm and observe the change in the length of the muscle.

What change do you observe in the muscle while it is contracting? \qquad
3. Wrap a strip of paper around your upper arm and mark the circumference of your arm on the paper. Clench your fist tightly and mark the new circumference on the paper. Observe what happens to the circumference of the muscle.

What change do you observe in the muscle while it is contracting? \qquad

1. Count the number of times you can make a fist in 20 seconds. Start with your hand completely outstretched and make a tight fist each time. Do it as rapidly as you can. Record the number of fists in Figure 1.
2. Now submerge your hand in a bowl of ice water. The ice has been added so that the temperature of the water is near freezing. Leave your hand in the water for 1 full minute.
3. Remove your hand from the water and immediately count how many tight fists you can make in 20 seconds. Record the number of fists in Figure 1.

Figure 1: Effect of Temperature on Muscle Action

Temperature	Number of Fists
Normal	
Ice Water	

What effect did the cold temperature have on the action of your hand muscles? EXPLAIN.

Effect of Fatigue on Muscle Action

1. Count how many times you can tightly squeeze a rubber ball in your hand in 20 seconds. Record the number of squeezes in Figure 2.
2. Repeat Step 1 nine more times and record your results. Do not rest between trials.
3. Make a line graph of your results.

Figure 2: Effect of Fatigue on Muscle Action

Trial	\# of Squeezes
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

What effect did fatigue have on the action of your hand muscles? EXPLAIN.
\qquad

What is this bone called?

Bone \#1:
Bone \#2:

Bone \#3:

a)
a) patella
a) femur
b) vertebrae
b) tibia
a) tarsals
c) cranium
c) humerus
d) sternum
b) phalanges
c) metacarpals
d) carpals

FUNCTIONS OF THE SKELETAL SYSTEM

1. Framework gives \qquad \& \qquad to body
2. Bones \qquad the \qquad organs
3. Major \qquad of body are \qquad to the bones
4. \qquad cells are formed in \qquad
\qquad of some bones
5. Skeleton is a place where major quantities of \qquad and \qquad compounds are \qquad
Which is NOT a function of the skeletal system?
a) to make new blood cells
c) to store nutrients
b) to protect vital organs like your heart, lungs \& brain
d) to move your body

BONE STRUCTURE

1. \qquad : covered with tough, tight fitting \qquad called \qquad
a) Blood \qquad carry \qquad into the bone

Bone \#2

Bone \#1
b) Important in the \qquad and \qquad of bone
2. \qquad bone: under the \qquad
a) Contains bone \qquad , blood vessels, minerals and \qquad fibers

Compact bone
b) Elastic fibers keep bone \qquad
c) 2 diseases that result from a lack of \qquad in bone: rickets, \qquad Yellow marrow
3. \qquad bone: found towards the \qquad of the bone
a) Less
b) Has many small \qquad spaces that make the bone \qquad
4. \qquad : a \qquad tissue that fills the cavities, or \qquad , in bones
a) Produces \qquad blood cells-2-3 \qquad per second
b) Produces \qquad blood cells
5. \qquad : thick \qquad layer of tissue that \qquad the \qquad of the bones
a) Flexible, important at the \qquad because it absorbs \qquad and makes movement easier

What part of the bone contains elastic fibers for flexibility?

a) bone marrow
b) compact bone
c) cartilage
d) spongy bone

What part of the bone makes new blood cells?
a) bone marrow
b) compact bone
c) cartilage
d) spongy bone

What part of the bone makes new bone cells?
a) bone marrow
b) compact bone
c) periosteum
d) spongy bone
b)

JOINTS

- Any place where \qquad or more bones \qquad
- \qquad : tough bands of \qquad that hold \qquad at the joints
- \qquad of Joints
a) \qquad : allows little or \qquad movement (\qquad , \qquad
b) \qquad : allows body to make a wide range of \qquad

1. \qquad $: 1$ \qquad in the ring of another (\qquad , __
2. \qquad : 1 bone has a \qquad end that fits into a \qquad - \qquad cavity on another bone (\qquad , \qquad
3. \qquad : has a back and \qquad movement (\qquad
\qquad
\qquad
4. \qquad : 1 part of the bone glides over \qquad bone (\qquad , -

What is the tissue called that holds bones together at the joints?
a) joint
b) ligament
c) tendon
d) cartilage

Which type of joint only allows movement going backward \& forward?
a) pivot
b) ball-and-socket
c) hinge
d) gliding

Which type of joint allows for the greatest range of movement?
a) fixed
b) ball-and-socket
c) hinge
d) gliding

Muscular System Notes

What is this muscle called?

Muscle \#1:
a) gluteus maximus

Muscle \#2:
a) pectoralis

Muscle \#3:
a) biceps
b) quadriceps
b) deltoid
c) trapezius
b) triceps
c) gastrocnemius
d) triceps
c) internal obliques
d) external obliques

FUNCTIONS OF THE MUSCULAR SYSTEM

\qquad

1. Muscles are the \qquad that \qquad body parts
a) Muscles always \qquad , they \qquad
b) \qquad of skeletal muscles work \qquad : 1 muscle
\qquad while the other muscle \qquad
2. Maintain \qquad by keeping body temperature \qquad
a) When muscles contract, \qquad energy (glucose) is converted to energy (heat)

When sitting, what must your thigh muscles do to straighten your legs?

a) one muscle contracts while the other relaxes
b) both muscles contract
c) both muscles relax
d) one muscle pulls on the bone \& the other pulls on the first muscle

GROUPS OF MUSCLES

1. \qquad -you \qquad control these (\qquad , \qquad , \qquad ,
2. \qquad - you \qquad control these, don't have to decide to make these muscles work (muscles around \qquad

TYPES OF MUSCLE TISSUE

\qquad muscle
a) Most numerous in body
d) Contract \qquad , tire
b) \qquad
e) Attached to the \qquad
\qquad
c) Looks \qquad (
) (thick bands that \qquad by \qquad

When the arm is bent
2. \qquad muscle
a) Found in: walls of \qquad c) \qquad striations
\qquad , , etc.
d) Contracts and relaxes
\qquad
b) \qquad
3. \qquad muscle
a) Only found in \qquad c) Has \qquad
b)
d) Contracts
times per minute (on the bone as the muscle
)

TEKS	Unit 6:Cells/Levels of Organization DCA Analysis	Test Question (Shade \# if correct)				My \%	Class Mastery \%	HMS Mastery \%	My Unit Mastery Overall
7.6B	I can distinguish between physical and chemical changes in matter in the digestive system [supporting standard]								\%
7.7B	I can illustrate the transformation of energy within an organism such as the transfer from chemical energy to heat and thermal ener								
7.12B	I can identify the main functions of the systems of the human organism including circulatory, respiratory, skeletal, muscular, digestive, excretory, reproductive, integumentary, nervous, and endocrine systems [supporting standard]								
7.13B	I can describe and relate responses in organisms that may result from internal stimuli such as wilting in plants and fever or vomiting in animals that allow them to maintain balance.								

$$
\text { Assigned: } \square \text { Enrichment }
$$

Date

Create a data table and graph using results from the Unit Test Analysis above. The data can be demonstrated in various ways. Select data you want emphasized. (Remember: TAILS and DRY MIX) Answer the following Questions

1. Rate your confidence level on content 1. Rate your confidence lev knowledge: 10 - High to 0-Low

Before Test ___ After Test
2. After analyzing your test data, what
challenged you?

$$
\square \text { Intervention }
$$

concept(s) did you identify as challenging?
What resource or activity would or did assist
you in understanding the concept(s) that
ल่

[^0]: Muscle of the heart

